C语言动态内存管理 malloc,calloc,realloc

1.为什么存在动态内存分配

我们已经掌握的内存开辟方式有:

int val = 20;//在栈空间上开辟四个字节
char arr[10] = {0};//在栈空间上开辟10个字节的连续空间

但是上述的开辟空间的方式有两个特点:

  1. 空间开辟大小是固定的。
  2. 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配。

但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道,那数组的编译时开辟空间的方式就不能满足了。这时候就只能试试动态存开辟了

2.动态内存函数的介绍

2.1 malloc和free

C语言提供了一个动态内存开辟的函数:

void* malloc (size_t size);

这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针。

  • 如果开辟成功,则返回一个指向开辟好空间的指针。
  • 如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查。
  • 返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。
  • 如果参数 size 为0,malloc的行为是标准是未定义的,取决于编译器。
    C语言提供了另外一个函数free,专门是用来做动态内存的释放和回收的,函数原型如下:

void free (void* ptr);

free函数用来释放动态开辟的内存。

  • 如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的。
  • 如果参数 ptr 是NULL指针,则函数什么事都不做。

malloc和free都声明在 stdlib.h 头文件中。
举个例子:
现在需要 n 个 int 类型的数据
1.用数组创建

int main()
{
	int num = 0;
	scanf("%d", &num);//输入要申请类型数据的个数
	int arr[num] = { 0 };
	//上述代码在支持C99标准的编译器上才行
	return 0;
}

2.使用 malloc 在堆区申请 10 个内存的空间

int main()
{
	int num = 0;
	scanf("%d", &num);
	int* ptr = NULL;
	ptr = (int*)malloc(num * sizeof(int));
	if (NULL == ptr)//如果ptr为空,为空程序就终止
	{
		printf("malloc fail");
		return;
	}
	int i = 0;
	for (i = 0; i < num; i++)
	{
		*(ptr + i) = 0}
	free(ptr);//释放ptr所指向的动态内存
	ptr = NULL;//是否有必要?
	return 0;
}

代码中的 ptr 是有必要被置空的,如果不置空ptr就是野指针,避免后面的程序出错最好在free掉ptr之后,将ptr置空

2.2 calloc

C语言还提供了一个函数叫 calloc , calloc 函数也用来动态内存分配。原型如下:

void* calloc (size_t num, size_t size);

  • 函数的功能是为 num 个大小为 size 的元素开辟一块空间,并且把空间的每个字节初始化为0。
  • 与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0
int main()
{
	int* p = (int*)calloc(10, sizeof(int));
	if (NULL != p)//判断ptr指针是否为空,不为空就继续使用
	{
		//使用空间'
	}
	free(p);
	p = NULL;
	return 0;
}

可以看出calloc申请的内存的值都会被初始化为 0

所以如何我们对申请的内存空间的内容要求初始化,那么可以很方便的使用calloc函数来完成任务。

2.3 realloc

realloc函数的出现让动态内存管理更加灵活。
有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的时候内存,我们一定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小的调整。
函数原型如下:

void* realloc (void* ptr, size_t size);

  • ptr 是要调整的内存地址
  • size 调整之后新大小
  • 返回值为调整之后的内存起始位置。
  • 这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到 新 的空间。
  • realloc在调整内存空间的是存在两种情况:
    • 情况1:原有空间之后有足够大的空间
    • 情况2:原有空间之后没有足够大的空间

情况1
当是情况1 的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。
情况2
当是情况2 的时候,原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找一个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。
由于上述的两种情况,realloc函数的使用就要注意一些
列如:

#include <stdio.h>
int main()
{
	int* ptr = (int*)malloc(100);
	if (ptr == NULL)
	{
		printf("malloc fail");
		return;
	}
	ptr = (int*)realloc(ptr, 1000);//这样可以吗?(如果申请失败会如何?)
	free(ptr);
	ptr = NULL;
	return 0;
}

上面代码有一点小问题,大家可以思考一下哪里不对
答:realloc 申请内存失败,它会返回空指针,如果用ptr接收的话它会把ptr原本指向的数据全部丢失
所以正确的方法如下

int main()
{
	int* ptr = (int*)malloc(100);
	if (ptr == NULL)
	{
		printf("malloc fail");
		return;
	}
	int* pptr = (int*)realloc(ptr, 1000);
	if (pptr == NULL)
	{
		printf("realloc fail");
		return;
	}
	ptr = pptr;
	free(ptr);
	ptr = NULL;
	return 0;
}

创建一个新指针,来接收realloc的返回值,如果不为空就让ptr指向pptr(realloc返回的地址)

3.常见的动态内存错误

3.1 对NULL指针的解引用操作

void test()
{
	int* p = (int*)malloc(INT_MAX);
	*p = 20;//如果p的值是NULL,就会有问题
	free(p);
}

INIT_MAX表示int类型的最大小,这里malloc一定会失败,p接收的就是NULL
*p = 20;就会造成非法访问内存
所以我们在申请内存后,要判断是否申请成功(就是判断 p 是否为空)

3.2 对动态开辟空间的越界访问

void test()
{
	int i = 0;
	int* p = (int*)malloc(10 * sizeof(int));
	if (NULL == p)
	{
		printf("realloc fail");
		return;
	}
	for (i = 0; i <= 10; i++)
	{
		*(p + i) = i;//当i是10的时候越界访问
	}
	free(p);
}

这里for循环里11次,造成了越界访问

3.3 对非动态开辟内存使用free释放

void test()
{
	int a = 10;
	int* p = &a;
	free(p);//ok?
}

free只可以释放,malloc,calloc,realloc申请的内存,不可以释放变量

3.4 使用free释放一块动态开辟内存的一部分

void test()
{
	int* p = (int*)malloc(100);
	p++;
	free(p);//p不再指向动态内存的起始位置
}

3.5 对同一块动态内存多次释放

void test()
{
	int* p = (int*)malloc(100);
	free(p);
	free(p);//重复释放
}

3.6 动态开辟内存忘记释放(内存泄漏)

void test()
{
	int* p = (int*)malloc(100);
	if (NULL != p)
	{
		*p = 20;
	}
}
int main()
{
	test();
	return 0;
}

忘记释放不再使用的动态开辟的空间会造成内存泄漏。
切记:
==动态开辟的空间一定要释放,并且正确释放 ==

4.几个经典的题目

4.1 题目1:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void GetMemory(char* p)
{
	p = (char*)malloc(100);
}
void Test(void)
{
	char* str = NULL;
	GetMemory(str);
	strcpy(str, "hello world");
	printf(str);
}
int main()
{
	Test();
	return 0;
}

这段代码中有两处问题
错误1.实参是一级指针,形参是也是一级指针的话相当于值传递
修改:正确答案,传递一级指针的地址,用二级指针接收

错误2.动态申请的内存没有释放

正确代码:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void GetMemory(char** p)
{
	*p = (char*)malloc(100);
}
void Test(void)
{
	char* str = NULL;
	GetMemory(&str);
	strcpy(str, "hello world");
	printf(str);
	free(str);
	str = NULL;
}
int main()
{
	Test();
	return 0;
}

4.2 题目2:

char* GetMemory(void)
{
	char p[] = "hello world";
	return p;
}
void Test(void)
{
	char* str = NULL;
	str = GetMemory();
	printf(str);
}

int main()
{
	Test();
	return 0;
}

这段代码中存在的问题是
GetMemory中的数组是局部变量,函数调用完之后会释放掉,所以用str接收的话,str就是野指针

正确代码:

char* GetMemory(void)
{
	char *p = "hello world";
	return p;
}
void Test(void)
{
	char* str = NULL;
	str = GetMemory();
	printf(str);
}

int main()
{
	Test();
	return 0;
}

这里的字符串 “hello word” 是在全局变量区存放

4.3 题目3:

void GetMemory(char** p, int num)
{
	*p = (char*)malloc(num);
}
void Test(void)
{
	char* str = NULL;
	GetMemory(&str, 100);
	strcpy(str, "hello");
	printf(str);
}

int main()
{
	Test();
	return 0;
}

这段代码的错误在,动态内存申请后没有释放

4.4 题目4:

void Test(void)
{
	char* str = (char*)malloc(100);
	strcpy(str, "hello");
	free(str);
	if (str != NULL)
	{
		strcpy(str, "world");
		printf(str);
	}
}

int main()
{
	Test();
	return 0;
}

这里的错误是,free(str)后应该给 str = NULL
原因:当我们free掉一个动态申请的数据后,我们是没有权限再去访问这个地址的,但这块区域还在内存里,当我们比较str!=NULL时这个条件就是成立的,尽管这段代码的结果可以打印出world,但是这个时候我们已经是非法访问内存了

5. C/C++程序的内存开辟


C/C++程序内存分配的几个区域:

  1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等。
  2. 堆区(heap):一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。分配方式类似于链表。
  3. 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。
  4. 代码段:存放函数体(类成员函数和全局函数)的二进制代码。

有了这幅图,我们就可以更好的理解在《C语言初识》中讲的static关键字修饰局部变量的例子了。

实际上普通的局部变量是在栈区分配空间的,栈区的特点是在上面创建的变量出了作用域就销毁。
但是被static修饰的变量存放在数据段(静态区),数据段的特点是在上面创建的变量,直到程序结束才销毁
所以生命周期变长。

6.柔性数组

也许你从来没有听说过柔性数组(flexible array)这个概念,但是它确实是存在的。C99中,结构中的最后一个元素允许是未知大小的数组,这就叫做『柔性数组』成员

例如:

typedef struct st_type
{
	int i;
	int a[0];//柔性数组成员
}type_a;

上面代码有些编译器会报错无法编译可以改成:

typedef struct st_type
{
	int i;
	int a[];//柔性数组成员
}type_a;

6.1 柔性数组的特点:

  • 结构中的柔性数组成员前面必须至少一个其他成员。
  • sizeof 返回的这种结构大小不包括柔性数组的内存。
  • 包含柔性数组成员的结构用malloc ()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。

例如:

//code1
typedef struct st_type
{
	int i;
	int a[0];//柔性数组成员
}type_a;
printf("%d\n", sizeof(type_a));//输出的是4

6.2 柔性数组的使用

int main()
{
	//代码1
	int i = 0;
	type_a* p = (type_a*)malloc(sizeof(type_a) + 100 * sizeof(int));
	if (p == NULL)
	{
		printf("malloc fail");
		exit(-1);
	}
	p->i = 100;
	for (i = 0; i < 100; i++)
	{
		p->a[i] = i;
	}
	free(p);
	return 0;
}

这样柔性数组成员a,相当于获得了100个整型元素的连续空间。

6.3 柔性数组的优势

上述的 type_a 结构也可以设计为:

//代码2
typedef struct st_type
{
	int i;
	int* p_a;
}type_a;
int main()
{
	type_a* p = (type_a*)malloc(sizeof(type_a));
	p->i = 100;
	p->p_a = (int*)malloc(p->i * sizeof(int));
	//业务处理
	int i = 0;
	for (i = 0; i < 100; i++)
	{
		p->p_a[i] = i;
	}
	//释放空间
	free(p->p_a);
	p->p_a = NULL;
	free(p);
	p = NULL;
	return 0;
}

上述 代码1 和 代码2 可以完成同样的功能,但是 方法1 的实现有两个好处:

第一个好处是:方便内存释放

如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。

第二个好处是:这样有利于访问速度.

连续的内存有益于提高访问速度,也有益于减少内存碎片。(其实,我个人觉得也没多高了,反正你跑不了要用做偏移量的加法来寻址)